A journal of Global Optimization 16: 371-392, 2000. 371
‘ 0 2000 Kluwer Academic Publishers. Printed in the Netherlands.

Multisection in Interval Branch-and-Bound
Methods for Global Optimization
|. Theoretical Results*

ANDRAS ERIK CSALLNER?, TIBOR CSENDES® and

MIHALY CSABA MARKOT?®

"Department of Computer Science, Juhasz Gyula Teachers Training College, Boldogasszony sgt. 4,
Szeged, Hungary (e-mail. csallner @jgytf.u-szeged.hu); *Department of Applied Informatics, Jozsef
Attila University, Arpad tér 2, Szeged, Hungary (e-mail: csendes@inf.u-szeged.hu); *Institute of
Informatics, Jozsef Attila University, Arpad tér 2, Szeged, Hungary (e-mail.: markot@inf.u-szeged.hu)

(Received 27 April 1999; accepted in revised form 17 November 1999)

Abstract. We have investigated variants of interval branch-and-bound algorithms for global
optimization where the bisection step was substituted by the subdivision of the current, actual
interval into many subintervals in a single iteration step. The convergence properties of the
multisplitting methods, an important class of multisection procedures are investigated in detail. We
also studied theoretically the convergence improvements caused by multisection on algorithms
which involve the accelerating tests (like e.g. the monotonicity test). The results are published in
two papers, the second one contains the numerical test resullt.

Key words: Branch-and-bound method; Globa optimization; Interval arithmetic; Multisection;
Accelerating devices

1. Introduction

The aim of this paper is to analyze algorithms solving the unconstrained global
optimization problem. In general, we will assume that a nonempty bounded closed
n-dimensiond interval or box X C R" containing all global minimizers x* of the (in
most cases continuous) objective function f : R" — R can always be given. Consid-
ering real-life problems this means practically no restrictions on the type of
problems considered. Keeping this argumentation in view, the bound constrained
global optimization problem has the following form:

min f(x) . (1)

xeX

The agorithms considered are based on interval arithmetic [1, 10, 14, 17]. We shall

* The work has been supported by the Grants AMFK 398/95, FKFP 0739/97, OTKA F
025743, T 016413, T 017241, and MKM 75/96.

372 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

denote the inclusion function of the objective function f by F:1" - I, i.e, for
vYel” and Vy €Y f(y) € F(y), where [stands for the set of al bounded closed
real intervas. In other words, f(Y) C F(Y) where f(Y) is the range of f over Y. The
lower and upper bounds of an interval Y& " are denoted by IbY and uby,
respectively, and the width by w(Y): w(Y) — max, (ubY; — IbY;). I(X) stands for all
Yel" such that YCX. Two important properties of inclusion functions of
continuous functions are:

DEFINITION 1. F is said to be an isotone inclusion function over X if for VY,
Ze(X) YCZ implies F(Y) C F(2).

DEFINITION 2. We cadl F a-convergent over X if for VY& II(X) w(F(Y)) —
w(f(Y)) < cw®(Y), where c is a positive constant.

Much effort has been made to improve the convergence speed of interval methods
for global optimization in the last few decades to enable these reliable methods to
solve real-life problems [4—6, 7, 9, 13, 18—20]. The main part of this paper develops
further an idea [2, 3, 10, 14], subdividing the current subproblem into many (s> 2)
smaller problems in a single step in contrast to traditional bisection, where two new
subintervals are always produced.

1.1. INTERVAL BRANCH-AND-BOUND METHODS

Branch-and-bound algorithms are based on successive subdivision of the set of
feasible solutions. They use various branching rules mostly based on bounds on the
objective function values to select a promising subset that might contain a global
solution. Other bounds, e.g. those on the gradient of f(x), are used to exclude subsets
that surely does not contain any solutions. Thus, the basic branch-and-bound
principle usually requires both lower and upper bounds on the function values over a
set of the search domain which can be an interval, as well. Interval arithmetic
provides these bounds.
The genera agorithm can be formulated as follows:

Model Algorithm

Sep 1. Let L be an empty list, set the current box A:= X, and the iteration counter
ki=1.

Sep 2. Subdivide A into a finite number of subsets A, satisfying A= U A, so that
int(A;) Nint(A;) = @ for all i #j where ‘int’ denotes the interior of a set.

Sep 3 Add the subintervals {A;} to K.

Sep 4. Discard certain elements from L that cannot contain a global minimizer.

Sep 5. Choose a new A€ L and delete if from the list, L := L\{A}.

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION —1 373

Sep 6. While termination criteria do not hold set k:=k + 1 and go to Step 2.
Sep 7. Stop.

The agorithm's iterative part begins with Step 2, the subdivision of a given
current interval A. This step is essential when trying to accelerate the model
algorithm and is investigated in subsection 1.3 and section 2 in details.

The outlined agorithm manages a list L which contains intervals whose union
includes all global minimizers of the considered problem. One of the generally used
tools is to update an upper bound on the global minimum f*, and deleting the
intervals having a larger objective function lower bound than this stored vaue
(cut-off test).

It is convenient to manage another list, L, to collect al intervals from the list L
where the bounds are tight or where the boxes are narrow enough. Thus, we can
terminate the algorithm, e.g., when our list L becomes empty.

1.2. ACCELERATING INTERVAL SUBDIVISION METHODS

Many tests exist to accelerate interval subdivision methods in general. Due to
possible overestimations, they do not influence the worst case behavior and hence
the theoretical convergence speed of a particular algorithm. These tests can lead to
better results on wide classes of optimization problems, but in general, neither can
these classes be determined explicitly, nor can the worst case speed be improved.
Some of these tests, usualy called accelerating devices [17], are listed below not
intending to be exhaustive.

The most widely used accelerating device is the cut-off test: find as small
objective function value upper bounds as possible. Based on such a bound and the
lower bounds computed for the elements of L, many subintervals can usualy be
discarded from the list. However, for an objective function that is ‘flat’ around the
global minimizer points, this device does not help much. A traditional local search
procedure can supply good upper bounds for the cut-off test.

The other widely used accelerating tool is the monotonicity test. Of course,
subsets where the objective function is strictly monotonous cannot contain stationary
points inside. This device is not efficient for an objective function that has several
saddle points and local minimizers. The same function can cause problems for the
concavity test that discards intervals over which the objective function is strictly
concave in a variable (since these intervals cannot contain a minimizer point inside).
The subdivision selection rules are described in [16].

Further ways to increase efficiency are the use of different inclusion functions,
e.g., the slope functions [11, 14, 15] or the centered forms with Baumann centers
[2]. Thisis avery interesting way of improving inclusions and further investigations
will most probably result in nicer worst case results for certain problem classes. This
paper, however, does not deal with these tools because we want to concentrate on
the effects of multisection.

374 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

Some algorithmic modifications can change the behavior of a method. These are
the modifications to Step 2 and Step 5 of the model algorithm which correspond to
the branching in branch-and-bound algorithms. In Step 2 we can vary the direction
and the number of the cuts. We could certainly also change the proportions of the
arising subintervals but the information supplied by interval arithmetic is usually not
enough itself to make proper decisions. In Step 5 the way to choose a new current
box has to be determined.

1.3. THE INTERVAL SELECTION RULE

In each iteration cycle a new interval, the current box has to be picked up from the
list L for subdivision. Some information on the intervals can be stored in L or can be
expressed implicitly by the ordering of the list elements. These informations have to
be used to make the decision concerning which interval to choose.

The two most widely used variants are to set the current box be the list element
with the smallest inclusion function lower bound [17], and the other is to choose the
‘oldest’ interval from the list which corresponds to one of the widest ones [10].
These rules change a so the theoretic convergence properties of the model agorithm
[17]. To be able to talk about these modifications we shall denote the algorithm
using the former rule the Moore-Skelboe algorithm and that applying the latter one
the Hansen agorithm. For both methods it is assumed that the current box is
bisected in Step 2 through one of the longest edges and never discard any element in
Step 4.

For the two considered agorithms the following assertion holds [17].

THEOREM 1. If w(Y;) - O implies w(F(Y,)) - 0 or w(Y) - 0 implies w(F(Y)) —
w(f(Y)) - 0 then both the Moore-Skelboe and the Hansen algorithms converge to
the global minimum: min, ., A IbF(Y) - f(x*), where x* denotes one of the global
minimizers.

The main question is the convergence speed of these agorithms. Although the
Moore-Skelboe method has turned out to be faster in practice, it is slower than the
Hansen algorithm regarding the worst case behavior [7,17]. The latter fact is
reflected in the following two theorems [17]:

THEOREM 2. The Moore-Skelboe algorithm converges arbitrary slowly if the
applied inclusion function is not inclusion isotone.

This restriction is not valid for the Hansen method as we have proved in [7].
Moreover, a theoretical worst case upper bound can be given for the difference
between the global minimum and the computed lower bound after k iteration cycles

[7].

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION —1 375

THEOREM 3. If F istheinclusion function of the objective function f applied in the
Hansen algorithm and F is of order « then

IbF(X) — IbF(A) < c(2w(X))“(k + 1)~ *"",)

where c is the positive constant of the a-convergence and A the current box of the
kth cycle in the algorithm.

The same result was proved for the Moore-Skelboe algorithm when assuming
inclusion isotonicity for the inclusion function [7].

THEOREM 4. If F is an isotone inclusion function of the objective function f
applied to the Moore-Skelboe algorithm and F is of order « then (2) holds where ¢
is the positive constant of the a-convergence and A the current box of the kth
iteration cycle in the algorithms.

(2) states an exponential convergence speed with respect to the number of
variables and no results have been published up to now proving a better upper
bound on interval methods for global optimization. Although some noninterval
methods have better practical convergence speed properties, they do not exploit
global information and thus do not assure convergence for such a wide class of
problems. In contrast to that, interval arithmetic provides lower and upper bounds on
the function value over awhole set of points, represented by boxes, providing global
information.

2. Multisection and Multisplitting

As it can be seen in the joint paper [16] too, it can be important to utilize any
information on the objective function to decide which direction for the bisection
should be chosen. If we revert to our first assumption, namely, the objective function
can be any f:R" - R real-valued function for which an evaluation routine is
available, then we have to find other ways to accelerate our algorithms. One way to
do so not discussed theoretically yet: changing the number of subintervals generated
by a subdivision or in other words using multisection in a single step.

The idea of multisection, i.e., multiple bisection, arose in [2, 10, 19] where more
than one bisection was made at a single iteration cycle. For seria algorithms the
triple bisection was experimentally found to be the most efficient, while for parallel
methods it was the double bisection. Thus, the current box is multisected into 2° = 8
or 2° = 4 subboxes (see Figure 1 for the 3-dimensional case) determining all of the
bisection directions prior to the first cut at that iteration cycle.

The results are convincing, however, additional calculations have to be made for
the choices of al bisection directions, and that consumes time. On the other hand, if
the directions are determined earlier, less information is available, and subboxes

376 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

G I / ______________ ‘ /

,,

__

Figure 1. Two types of multisection: a triple bisection into s= 2% =8 subintervals in a single
iteration cycle, and as double bisection providing s = 2° = 4 subintervals.

which could have been discarded from further investigations are processed. We can
save computations if we use only the most promising direction for subdivision. This
type of multisection, when s equal size subintervals are produced will be called
multisplitting in the sequel (Figure 2).

Both ideas above have something in common: They utilize the information on
many smaller subboxes, and they are not investigating the larger boxes in the search
tree. Let us consider this on an example on multisection.

Let us assume that we ssimply bisect the current box A into two subboxes A, and
A,, then the resulting A, into A,, and A,, and A, into A,, and A,,, respectively. If
we assume that the particular bisection directions are the same for bisection and
multisection, after a single 2-multisection step we get the four subboxes A,;, A,
A,,, and A,,. Obvioudly, the function evaluations over these subboxes provide more
information than the function evaluations over their predecessors, hence, making the
function evaluations at A, and A, unnecessary, multisection can accelerate the

Figure 2 Multisplitting is a special multisection where s equal size subintervals are produced
(here s=15, i.e. the 5-gplitting is shown).

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION —1 377

method. On the other hand, however, we could have aready discarded A, and A,
saving the calculations for the smaller subboxes. If only one of them could have
been discarded, then we have the same number of subboxes to be investigated as in
the bisecting case. The decisive question is, whether there occur more advantageous
than disadvantageous cases. The principle is the same for a multisplitting algorithm,
apart from some unnecessary computations for the subdivision directions using
multisection.

The process of subdivisions can be considered as a tree, as well, denoting the root
with the initial box X, and the successors of a box with the subboxes it breaks up to.
For a bisection method this is a binary tree and omitting certain levels from that tree
we get the search tree of a multisection algorithm.

2.1. THE MULTISPLITTING ALGORITHM

To investigate the convergence speed of the multisplitting algorithm we restate some
results from [7] extending them for the multisplitting case.

In the following we will consider the multisplitting algorithm which differs from
the Hansen method only in splitting the current box A in Step 2 through the longest
edge into s equal size subintervals where s can be any natural number greater than
one. Without loss of generality we assume in the sequel that X is an s-quasi
hypercube, i.e., every edge is shorter than s times the length of any other edge (if
any). Expressed by formulas, if X=X, X--- XX, where the X (i=1,...,n)
interval denotes the ith projection of X, then w(X;) <sw(X) (Vi, j =1,...,n). Note
that this assumption does not influence our theoretical investigations, since after
some problem-specific constant number of iteration cycles X breaks down to s-quasi
hypercubes which can be treated separately. Its importance, however, is reflected in
the following notion of levels of iteration cycles for the multisplitting algorithm we
define below.

DEFINITION 3. We say that iteration cycle number k is on the Ith level if for the
maximum width w,__ of the boxes on the list L before the actua splitting the
following holds:

—(1+1)

S wiX) <w,. <s 'WX). (3)
This notion simply follows the way how multisplitting realizes the subdivision. The
meaning of it is that if X is an s-quasi hypercube, then just after the Oth level of
iteration cycles the subintervals on list L are again congruent s-quasi hypercubes
with a width of w(X)/s. This property aways recurs when entering a new level as a
consequence of the interval selection strategy of Hansen, i.e., the Hansen and
multisplitting algorithms. The levels of the algorithm are indeed ordered classes over
the iteration cycles, as the following remark formulates it.

378 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

REMARK. If k and k + 1 are iteration cycles and k is on the Ith level then k + 1 is
either on level | or on level | + 1.

As Step 4 of the model algorithm is missing in the multisplitting algorithm and
since we assume the list L to have infinite capacity, all new subintervals are to be
found on our list. The next lemma shows how our list grows.

LEMMA 1. When beginning with the iteration cycles of level | of the multisplitting
algorithm with s-multisplitting, for the number of boxes N, on the list L the
following holds:

N=s"—1. 4)

Proof. When entering a new level, all boxes waiting for splitting are congruent,
and thus, their widths are the same, w, . The iteration cycles are finishing level
| — 1 if the last subbox having w,,, width is split into s parts. Then the new
maximum width is w,,,,, ‘=W, ,q/S During this process each box is obviously
subdivided into s" subboxes, hence for all €N, N =s"(N_, + 1) holds. Since
N, =0, namely only the current interval A= X exists before the level O iterations,
the assertion of the lemma follows. O

The next question arising is how many iteration cycles belong to a level. Some
basic steps of the multisplitting method are executed only once in each iteration and
thus it is important to be able to calculate the number of iteration cycles that have to
be done to enter a new level.

THEOREM 5. The number of iteration cycles belonging to the Ith level is

s"(s" - 1)
k=—"%-17 - ®)

Proof. Each box on the list L and the current box A has to be split into uniform
subboxes. Since also at the beginning of a level we have uniform boxes, let us first
consider only one of them. Because this is an s-quasi hypercube due to our
assumption, first it is sliced through one coordinate direction, then the obtained
subboxes through another direction perpendicular to the previous, and so on. At
each such stage (or relating to each direction) the number of subboxes to be sliced is
s-times greater than t was at the previous stage. The number of stages equalsn, i.e.,
the dimension of the problem. Hence to split one box into uniform subboxes of the
next level we need

n Iil_sn_l
s t=5g ®)

iteration cycles.

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION —1 379

Having now N, + 1 =s" uniform boxes at the beginning (see (4)), multiplying it
by the result of (6), the formulafor k; follows. O

Now we know how many iteration cycles belong to a particular level. To be able
to calculate the number of iteration cycles which has to be done to reach a certain
resolution, first we need to know which iteration cycles are involved in the Ith level.
The next theorem gives an answer to this question.

THEOREM 6. Iteration cycle k is on the Ith level if and only if

nl n(l+1)
s —1 S -1
—) +1<ks< Ts—1 - (7
Proof. Inequalities (7) come directly from (5) of Theorem 5. That theorem states
that at the Ith level there are exactly k, iteration cycles. Then summing the

k =3"¢"-1 terms we have for | =1

-1 I—1 _nis.n n -1 nl
s -1) s-1 S —1

Thus, up to the last iteration of level number | — 1 the whole number of iteration
cycles executed is delivered by (8). The next step already belongsto level | resulting
in the first inequality of (7).

The Ist step of level | can be calculated in a similar way summing to | instead of
| —1in(8). That gives us he second inequality of the assertion. O

Now we have characterized the quite natural notion of iteration levels and are
nearly ready to give an upper bound on the convergence speed of the multisplitting
algorithm in the general case. For the proof of the theorem for the worst case we
first cite an important lemma [7]:

LEMMA 2. If F is an a-convergent inclusion function of f over X then for any
Y e l(X)

IbF(X) — IbF(y) = f* — IbF(Y) < cw*(Y) (9)

holds where c is the positive constant from the a-convergence definition.

Now we can state the worst case convergence speed for the multisplitting
algorithm.

THEOREM 7. If F is an a-convergent inclusion function of f over X then

Ibf(X) = min IbF(Y) < ow(Q)s" (s — 1) +1) " (10)

holds for the worst case, where c is the smallest positive constant with which the

380 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

a-convergence is valid, and L the list of the kth iteration of the multisplitting
algorithm.
Proof. From (9) of Lemma 2 it follows that
— 1 @ *

Ibf(X) YgnngAle(Y)scw Y*), (12)
where Y* denotes the interval where the minimum min, ¢, . IDF(Y) is reached. If
iteration cycle k is on the Ith level then from (3) of Definition 3

(VYELUA w(Y)<s 'W(X) (12)

follows for any Y subinterval of the kth iteration cycle.
On the other hand, we can reform the second inequality of (7) of Theorem 6:

n(l +1)
=Sgog
to
k(s— 1)+ 1)*""s's,
and then
s'<sgkis—1)+1) ", (13)
Applying now (13) to (12) and the result to (11), we have exactly what had to be
proved. O

This result means that multisplitting influences the theoretical convergence speed.
In spite of the O(k *'") worst case for the Hansen algorithm (see Theorem 3) the
presence of the parameter s modifies the worst case to O(s*""'"k™“'"). The new
term s* '™ indicate that in spite of the promising example, multisection may
result in a worse efficiency. Though for the same k the upper bound becomes higher
and hence worse with increasing s, more information can be gained in a single
iteration cycle. Notice that (10) gives exactly (2) for the case s= 2. It is worth to
remark, that for very high s we cannot complete the first iteration cycle due to
memory shortage, and thus after a large number of function evaluations nothing can
be said about the optimum. According to Theorem 7, multisplitting does not change
the worst case convergence speed for one-dimensional problems.

A more palpable characterization comes directly from the proof of Theorem 7. If
we substitute (12) into (11), we have a similar formula for the worst case asin (10)
but with parameter I:

Ibf(X) — IbF(A) < cw“(X)s ' . (14)

It is clear that the higher level the algorithms is, the better the optimum f* is
approached by the inclusion function. Inequality (14) describes the exponentia
nature of this relation. However, the same level can mean different states referring

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION —1 381

to the subdivision, i.e., for a greater s the same | attains a finer actual resolution of
the domain X but needs more iteration cycles.

At the same time, asingle level consists of severa iterations. The best case occurs
if the considered iteration is the first of its level:

THEOREM 8. Let F be an a-convergent inclusion function of f over X and let k be
the first iteration of some | level. Then the following inequality holds for the best
case:

— i o _ _ —aln
Ibf(X) Jmin IbF(Y) = cw*(X)(k—1)(s—1) +1) . (15)
Proof. Since k means here the first iteration of level |, the first inequality of (7)
holds as an equality. Rearranging this equation we get
s'=(k-1)(-1)+1) ", (16)

Substituting it into (12), we obtain w(Y) <w(X)((k — 1)(s — 1) + 1). Now the latter
and (11) provide

Ibf(X) —_min_IbF(Y) <ow(X)(k ~ 1)(s— 1) +1) ",

the statement of Theorem 8. O

In contrast to the result of Theorem 8 on a general upper bound on Ibf(X) —
miny <, A IDF(Y), increasing s means a decrease, i.e. an improvement of this upper
bound for the first iteration cycles of the levels.

THEOREM 9. If we increase the number of intervals split fromsto ps (p>1, psis
an integer) of the multisplitting algorithm, then the necessary levels to achieve the
same resolution (the maximal width of the boxes in L) of X decreases by a factor of

B: BI(s) = I(ps), where

log P)’l
logs '

B ><1 + (17)

The number of iterations changes by a factor of y. vk(s) = k(ps) at the same time,
where

s—1
ps—1°

y = (18)

Proof. The multisplitting algorithm does not contain any accelerating devices
(Step 4) and subdivides the widest box on list L, hence the length of L characterizes
the resolution of X. But this length can be determined using Lemma 1. Using
s-splitting, the list length is s™ — 1 when entering level |, while it is (ps)™' — 1 for
ps-splitting. Due to our assumption

s" < (ps)™', (19)

382 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

implying
logs nl

log ps 14 logp’
logs

ngl =log,s" = nl

what is equivalent to the stated inequality (17). Note that the same result can also be
achieved using Definition 3 instead of list lengths.

Because of (8) of the proof of Theorem 6, the number of iterations to be done
until reaching the first iteration of level | is

nl
s' -1
k= p—
The corresponding formula for the ps-splitting is

(20)

(o (P9 -1
YT s -1

to reach level BI. Combining (19) and (21) we obtain

(21)

nl
s -1
vk = 0s—1°

Dividing it with (20) we get the stated inequality (18) for y. O

Theorem 9 investigates the case when the multisplitting algorithm completes
whole levels. Although (17) is sharp aso for the genera case in the sense that

log p\~*

Bl = [(1+ |ogs> D (22)
where O denotes the ceiling function, the smallest integer not smaller than the
argument. The second statement, (18) of Theorem 9 can deliver in general a rough
underestimation and y can become even greater than 1. If, e.g., an s-splitting
terminates finishing a complete level, a ps-splitting can be forced to go through the
same number of levels resulting in much more iterations in total. However, some
test results have shown a significant decrease in the number of iterations when
increasing s from 2 to 3, 4, or 5 in most of the cases.

The aim is first of all to accelerate the Hansen method with the aid of the above
outlined modification resulting in the multisplitting algorithm, so let us consider the
typically most time consuming parts of it, i.e., those steps of the algorithm which
include function calls. Step 1 of the multisplitting algorithm is executed only once,
so it should not be considered. Note, however, that local search methods can be used
at this step to determine a good upper bound on the global solution of (1) for the
cut-off test. Step 2 involves a calculation for determining the splitting direction. This
can aso mean some inclusion function calls for the objective function and its
derivatives (for details see subsection 1.4 and [9]). When implementing the

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION —1 383

multisplitting algorithm, Step 4 is usualy executed together with Step 3 or Step 5.
In the former case certain elements are not even entered to list L, in the latter case a
current box is thrown away on the spot if it cannot contain any global minimizers
and a new one is chosen. Both of these versions need additional function calls,
however, we shall investigate the more widely used former one. Step 5 itself does
not need any function calls since the multisplitting algorithm like the Hansen
method manages an ordered list with the simple first-in-first-out principle. The
termination condition check in Step 6 may require extra function calls, as well.

Summarizing these results we get the following values for the number of
inclusion function calls required by the particular iteration cycles of the multisplit-
ting algorithm:

Sep 1. —

Sep 2. C,

Sep 3 Cs

Sep 4. (included in Step 3)
Sep 5 —

Sep 6. C,

Sep 7. -

Note that the costs C, do not depend on s. Hence, the total cost of function callsis
C=C,+C,s+C;. (23)

Thus, a single iteration cycle costs O(s) function calls. Hence the dependence of
the number of function calls on the number of iteration cycles is linear and the
magnitude of the convergence speed is the same for the number of function calls as
for the number of iteration cycles stated in (10) of Theorem 7.

However, interva subdivision methods are in practice amost never used without
accelerating devices. Although they have been used widely for a long time, the
investigation of the theoretical effect of these modifications is a difficult problem.
The next section provides practica and theoretical results on their effects on the
convergence speed.

3. The Accelerating Devices

The generally used accelerating devices are very useful in most cases but it is
difficult to treat their effects theoretically when making a worst case anaysis. In
fact, they do not improve the worst case convergence speed, yet it is worth to
involve them into our investigations since for a wide problem class they can
improve convergence speed by several magnitudes. Let us utilize their effects of
shortening the list L by discarding certain elements at each iteration cycle,
regardless of the methods they use to obtain this.

384 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

Table 1. The n vaues, the relative number of subintervals remained after the use of an
acceleration test, in percentage for the monotonicity, concavity and cut-off tests on a wide set of
global optimization problems according to the levels of nodes in the search tree

Level Monotonicity t. Concavity t. Cut-off t.
min. aver. max. min. aver. max. min. aver. max.
0 50 91 100 100 100 100 100 100 100
1 3 52 100 97 100 100 3 53 100
2 6 44 83 56 90 100 3 44 81
3 12 31 83 83 95 100 3 34 81
4 12 32 48 88 96 100 3 26 56
5 12 29 46 - - - 2 24 45
6 8 27 44 - - - 3 18 38
7 7 25 46 - - - 3 17 34
8 11 24 43 - - - 3 16 34
9 12 28 38 - - - 3 17 26
10 11 22 39 - - - 3 17 31

Recalling the notion of levels, when entering a new level with the multisplitting
algorithm, al N, + 1 boxes waiting for subdivision are congruent. We now assume
that at each iteration level at least a certain 1 —n (0<% < 1) proportion of boxesis
discarded from the list with the aid of a set of accelerating devices, hence the
number of elements to be processed can be less than N + 1 at every level. To
demonstrate the viability of this assumption, Table 1 contains test results on typical
values of 7 in practice.

3.1. THE 7-ACCELERATED ALGORITHM

To check how realistic this assumption is, we have completed a computational
study. The program visited each node of the search tree and checked how many
subintervals remained after the use of a given acceleration device (e.g. the cut-off
test). This experiment was repeated for each global optimization problem of the later
efficiency test (for details see subsection 2.1 in [16]). Table 1 contains the average,
the minimum and the maximum of the obtained empirical % values in percentages.

The studied acceleration devices show two phases regarding the achieved deletion
rates. In the first 1-2 levels they usually cannot delete a substantial amount of boxes.
According to the rounded figures in Table 1, the concavity test e.g. basically could
not delete subintervals during the first two search levels. In the subsequent second
phase, the average n values improve gradually, and they seem to stabilize around
specific values. Thistrend is also followed by the respective minimal and maximal n
values — although they represent sometimes only a single test problem with specia
characteristic. This is also the reason why the concavity test could not delete any
subintervals in the worst case.

Both the monotonicity and the cut-off tests are quite effective. The figures in

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION —1 385

Table 1 are in a nice accordance with earlier reports [8,12], athough the
optimization algorithms did not check the search tree uniformly. These acceleration
devices ensure substantial deletion rates. The concavity test is less effective, so it
can be used better as a complementary measure, and in the case if the inclusion of
the Hessian is readily available. The missing deletion rates after level 4 for the
concavity test are due to memory shortage. Although no » <1 value fits each level
and each test problem, the subsequent theoretical analysis describes well the general
behavior of such accelerated optimization agorithms.

3.2. THEORETICAL CONVERGENCE RESULTS

For the theoretical analysis only the second phase is of importance with stabilizing n
values, thus, Step 1 of the multisplitting algorithm aso has to be changed. We
assume that the first phase is over, there remained N, + 1> 0 congruent boxes
which are non-overlapping subintervals of X and their union contains all global
minimizers. Box A is one of them which is picked up from L. The remaining steps
of the algorithm are left untouched. We shall call this algorithm the n-accelerated
algorithm.

After accomplishing a level of iteration cycles a single box leaves at most [4s"[]
successors on the list instead of having al s™ subboxes stored (here CiCstands for the
integer part of the argument or the floor function). In general, the next lemma can be
stated.

LEMMA 3. When entering level |, for the number of boxes N, on the list L the
following holds:

N <[ns") (N, +1)— 1. (24)

Proof. During the iteration cycles of a single level, each remained box when this
level was entered is subdivided into s" congruent subboxes. At every iteration cycle
of that level some subboxes are deleted so that only at most 100y percentage of
them remain by the end of that level. Thus, after completing all iteration cycles of
the level, at most ns" successors of each box are left, i.e., N < #s"[(N,_, + 1) —1
holds for all | €N. Having N, + 1 boxes at the beginning, the formula can be
expressed explicitly delivering (24). O

This result is very similar to Lemma 1. To be able to state the number of iteration
cycles belonging to a single particular level, further circumstances have to be
clarified. It is not the same whether the n-accelerating device deletes a few large
boxes at the beginning of alevel leaving only at most [s"Ci(N, + 1) intervals at the
end of that level or discards plenty of smaller boxes only already nearing the end of
that level. In the former case the number of iteration cycles of that level can be
small while in the latter case it can get rather large. The next lemma characterizes

386 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

the number of iteration cycles belonging to a level in the best and worst cases,
applying an n-accelerating device.

LEMMA 4. 1. For the number of iteration cycles belonging to the Ith level of the
n-accelerated algorithm the following holds in the best case:

s'—-1 N
k<35—7 @ Uns) (N, + DL (25)
2. In the worst case for the k; number of iteration cycles belonging to the Ith level
of the n-accelerated algorithm the following holds:

n

s'—-1_

k<57)N, + 1) (26)
Proof. 1. The best case occurs if n>2, and [{1— n)(N, + 1)Uboxes have been

discarded during the first iterations of the Ith level in full from the list L, without

any subdivisions saving

-1
-)N +)0

iteration cycles for level 1. In the second group of iteration cycles of level | at least
further [frac((1 — n)(N, + 1))Osubboxes of width s™'w(X) are deleted saving

s t—1

-1 Bfrac((l-n)(N + 1)U

iteration cycles, and then a few further subboxes that have widths of s™'w(X) and
s "Pw(X). Here frac(x) stands for x — XOI The last mentioned boxes can be
neglected when an upper bound on k; is calculated. The resulting list of an example
2-dimensional problem after this process is shown in Figure 3, and the deleted boxes
are denoted by shading.

Thus, the number of iteration cycles k, needed is at most

Figure 3. An example outcome of n-acceleration: it is the best case, when the least iteration
cycles are made on level 0. The large squares are the 3 starting intervals (N, = 2), and the deleted
subintervals are indicated by shading. The respective parameters were: s=3, n=2, and n = 0.4.

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION —1 387

S;__ll - S'S__ll 1 —n)(N + 1)5—%_11 Bfrac((1—n)(N) + D)0, (27)

and the reformulation gives
n n-1 __

k<37 @(N, Y I A E'l;frac((l 7N + 1)0

n_
=

— 11 BN +)0 (28)

Substituting N, < [{xs")' [N, + 1) — 1 from Lemma 3 into this result we obtain the
inequality

s —1 n
k<57 0 tns") (N, + 1)L

which was to be proved. As we have mentioned, there can be more smaller terms
calculated determining a sharper bound for certain cases.

2. In the worst case the remaining boxes are deleted not at the beginning but at
the end of that level. Thus, boxes are only deleted when their width is already
s "Dw(X) (see Figure 4). Hence, no iteration cycles can be saved for that level,
because splitting these subboxes is the duty of the next level.

Entering level | there are at most [{%s")'(N, + 1)[boxes waiting for subdivision
according to (24), each of which needs (s" — 1)/(s — 1) iteration cycles as stated in
(6) of Theorem 5 to be split into uniform subboxes. The result obtained for the
multisplitting algorithm is obviously applicable for the present worst case study.
Multiplying these two terms provides the assertion. Also this bound is sharp. O

REMARK. For k, the number of iteration cycles belonging to the Ith level of the
n-accelerated algorithm in the best case the inequality

n nfl

1 G7(N| +1)0- E‘lEffff\C((l (N + 1)1 (29)

k <

Figure 4. An example outcome of n-acceleration: it is the worst case, when the most iteration
cycles are made on level 0. The large squares are the 3 starting intervals (N, = 2), and the deleted
subintervals are indicated by shading. The respective parameters were: s=3, n=2, and n = 0.4.

388 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

holds if n=<2, and for n< 2 no better upper bound can be given utilizing only the
7-assumption.

This follows immediately from (27) of the proof of the statement (25) of Lemma
4. For instance, let us consider the example given in Figure 3. The total number of
iteration steps of level 0 is 12 in the unaccelerated case, but only 6 with an
0.4-acceleration device. The bound calculated with the aid of (25) is 8, which is
correct, but not tight. On the other hand, (29) of Remark provides the correct value

4.2 [Bfrac(1.8)C=6.

Of course, the formula can be extended with severa terms obtaining sharp bounds
for different dimensions n, but for our further investigations this direction is out of
interest.

The important point, as it was in the general case, is to characterize the steps
belonging to a certain level. The following theorem gives a necessary condition for
an iteration cycle to be on the lth level in the worst case.

THEOREM 10. If the kth iteration cycle is on the Ith level then
1. in the 4s"(> 1 case

n__ nrh+1
_s-1Gs"tt -1

k<6=1 Geo1 MetD (30)
holds while
2. when [4s"= 1 then
"1
ksss_l I+ DN, +1). (31)

Proof. Lemma 4 provides an upper bound on the number k; of iteration cycles of
the Ith level. If (%s"(> 1 then summing the k; terms we get

| | n
s"—1 .
k<> {ns")' (N, + 1) (32)
i=0 -0 $—1
s"—1 s"—1 "0t -1

=

s—1 No+1) 2 s = (N, + 1), (33)

s—1 @s'0-1
and that proves assertion 1.

If 3s"0=1then =_, @s"[I=1+ 1, and inequalities (32) and (33) provide the
better upper bound

| n
s —1
_Zokis s—1 (DN + 1), (34)
proving assertion 2. O

We cannot give a lower bound for the iteration cycles of level | since our

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION —1 389

assumption on the subboxes remaining after each step is only an over-estimate. On
the other hand, sharpening our assumption would turn the theoretical results into
unrealistic. However, (30) and (31) of Theorem 10 allow us to prove the next result
on the worst case convergence speed of the n-accelerated algorithm.

THEOREM 11. Let F be an a-convergent inclusion function of f over X and let us
apply the n-accelerated algorithm to solve (1). Moreover, let the iteration cycle k be
on level | at the moment of investigation.

1. If [s">1 is true then

Ibf(X) = min 1bF(Y) = O(y*""s" """k~ '") (35)
holds.
2. In the (4s"[= 1 case the convergence can be characterized by:
. B B |)al/n)
_ — al/n al/npal/n — -
Ibf(X) min IbF(Y) = O(s k 17 O(<5k . (36)

Proof. 1. Let us assume that
Hs"= 2. (37)
Since #s"0is positive and the (fs"[J= 1 case is investigated separately, condition

(37) is aways fulfilled. Thus, inequality (30) of Theorem 10 is valid and it can
easily be rearranged based on the natural assumptions of s>1 and N, + 1>0 to

k(s—1)(ns" — 1) 1< k(s— 1)(@s"+ 1)
(N, + 1)(s"— 1) T (N, + D" —1)

+1l<Os'0't. (38)

Subsequently, we give an upper bound on [#s"CI"*. Obviously, [4s"C< 5s” + 1, and
1s" > 1 holds because of condition (37). Hence, s” + 1 < 2»s". This provides the
following estimation:

D’Sn|j+1 < (27’]Sn)|+l — (Zn)l+1(sls)n) (39)
Inequalities (38) and (39) together give an upper bound for s
- n_ 1
Ks =" =1 1\~
ciod M tDE -1 0
(zn)l+1

The n-accelerated algorithm is a Hansen method concerning the way it selects the
current box, hence, from Definition 3

WA =w, . <s 'W(X) (41)

holds for all current boxes A of the Ith level. Because al boxes Y stored in the list L
have less or equal widths as the current box, for the interval Y* where the minimum
minyc, A IDF(Y) is obtained the inequality

390 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

wiY*) < s 'w(X) (42)

also holds.
Applying (42) to Lemma 2 we have

Ibf(X) _YQLi n, IbF(Y) < ew*(Y*) <c(s 'W(X))* . (43)

Let us continue the inequalities (43) substituting (40) into it:
— n __ 1\ «@
Ks= s =1) 1\~
- « N +1)(s"— 1)
c(s w(X))" <c\ sw(X) 20 (44)

Checking the terms’ magnitudes assertion 1 follows.
2. In the [4s"[= 1 case the inequality (31) of Theorem 10 holds. Rearranging
(31) we obtain:

. k(s—1) !
(om oY))

Based on the argumentation of the proof of assertion 1 above, (45) can be
substituted into (43) delivering

Ibf(X) —_min_ 1bF(Y) < c(% + 1) WO (46)

and that implies (36). O

Note that in (10) of Theorem 7, which corresponds to the unaccelerated
multisplitting algorithm the magnitudes of the terms s and k are the same as in the
accelerated case as stated in (35) of Theorem 11. The only difference in non-
constant terms is the presence of 7. This coefficient expresses the weakness of the
n-accelerating device. Thus, the greater this 7 is the worse approximation for the
optimum can be achieved using a fixed amount of computation. The [#s"[= 1 case
is very special and quite rare. The bound given in (36) of Theorem 11 is always
tighter than the bound of (35). The latter statement also means that the bound of
(35) can aways be used, and the specia case has only been investigated to be
exhaustive. Summarizing the consequences of Theorem 11, the convergence speed
depends on 5 as 7*'"'". In other words, for fixed a-convergence rate and dimension
n, better acceleration devices result in polynomially better convergence speed: the
larger level we are, the quicker the convergence speed. This time no best case
convergence speed can be given due to the definition of 5 (see also the comment
after the proof of Theorem 10).

All theoretical convergence results given here for multisplitting or n-accelerated
algorithms make only sense if the notion of iteration levelsis valid for the method in
guestion. Any attempt to trandate the train of thought directly to the widely used
M oore-Skelboe methods would fundamentally fail. The reason for thisis again to be

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION —1 391

found in how the Hansen and the Moore-Skelboe methods search the tree of
subdivisions to tighten the inclusion of the global optimum value. While the Hansen
methods perform an accurate breadth-first search, a Moore-Skelboe method can go
deep down the tree and then reach out for a box being much higher, depending on
the particular problem to be solved. This is the reason why the otherwise easily
available inclusion isotonicity property of the inclusion function is required for
Moore-Skelboe methods to be acceptably effective. The theoretical investigation of
Moore-Skelboe methods needs therefore a completely different point of view, and
such a study exceeds the range of this paper.

4. Summary and Conclusions

Compared to stochastic methods, interval methods for global optimization are able
to provide solutions of guaranteed reliability — at the costs of sometimes substantial-
ly higher computational and space complexity. The present study aimed at
investigating the possibilities of improving the efficiency while keeping the
reliability. A new subdivision technique is applied where the traditiona bisection
step is substituted by the subdivision of the current interval into many subintervals
in a single iteration step. For the multisplitting agorithm the number of iteration
cycles belonging to a level of subintervals and the serial numbers of such iteration
cycles were determined. On this basis, the speed of the convergence to the global
minimum value was given for the best and the worst cases. According to these
convergence speed bounds, the worst case speed is the best for bisection, while the
best case speed improves as s, the number of subintervals generated in a single
iteration step increases. The effects of the accelerating devices on the convergence
speed are specified, and it turned out that better acceleration devices result in
polynomially better convergence speed, and on the larger level we are, the quicker
the convergence speed.

Acknowledgement

The authors are grateful for the useful suggestions of the two anonymous referees.

References

1. Alefeld, G. and Herzberger, J. (1983), Introduction to Interval Computations. Academic
Press, New York.

2. Berner, S. (1995), Ein paralleles Verfahren zur verifizierten globalen Optimierung. Disserta-
tion, Universitat Wuppertal.

3. Berner, S. (1966), New results on verified global optimization, Computing 57: 323-343.

4. Casado, L.G., Garcig, |. and Csendes, T., Adaptive Multisection in Interval Methods for
Global Optimization, submitted for publication
(available at http://www.inf.u-szeged.hu/~csendes/ publ.html).

392

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

Casado, L.G., Garcia, I. and Csendes, T., A Heuristic Rejection Criterion in Interval Global
Optimization Algorithms, submitted for publication

(available at http://www.inf.u-szeged.hu/~csendes/ publ.html).

Csallner, A.E. (1993), Globa optimization in separation network synthesis, Hungarian J.
Industrial Chemistry 21: 303—308.

Csallner, A.E. and Csendes, T. (1996), On the convergence speed of interval methods for
globa optimization, Computers, Mathematics and Applications 31: 173-178.

Csendes, T. and Pintér, J. (1993), The impact of accelerating tools on the interval
subdivision agorithm for global otimization, European J. of Operational Research 65:
314-320.

Csendes, T. and Ratz, D. (1997), Subdivision direction selection in interval methods for
globa optimization, SAM J. Numerical Analysis 34: 922-938.

Hansen, E. (1992), Global optimization using interval analysis. Marcel Dekker, New York.
Hansen, P, Jaumard, B. and Xiong, J. (1994), Cord-Slope Form of Taylor's Expansion in
Univariate Global Optimization, J. Optimization Theory and Applications 80: 441-464.
Ichida, K. and Fujii, Y. (1979), An interval arithmetic method for globa otimization.
Computing 23: 85-97.

Kearfott, R.B. (1996), Test results for an interval branch and bound algorithm for equality-
constrained optimization. In: Floudas, C.A. and Pardalos, PM. (eds), State of the Art in
Global Optimization. Kluwer, Dordrecht, 181—-199.

Kearfott, R.B. (1996), Rigorous global search. continuous problems. Kluwer, Dordrecht.
Krawczyk, R. and Neumaier, A. (1985), Interval Slopes for Rational Functions and
Associated Centered Forms, SSAM J. Numerical Analysis 22: 604—616.

Markot, M.Cs., Csendes, T. and Csallner, A.E., Multisection in Interval Branch-and-Bound
Methods for Global Optimization Il. Numerical Tests. Submitted for publication
(available at http://www.inf.u-szeged.hu/~csendes/ publ.html).

Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization. Ellis
Horwood, Chichester.

Ratschek, H. and Rokne, J. (1993), Interval Methods, In: Horst R. and Pardalos PM. (eds)),
Handbook of Global Optimiation, Kluwer, Dordrecht, 751-828.

Ratz, D. (1992), Automatische Ergebnisverifikation bei globalen Optimierungsproblemen.
Dissertation, Univesitéat Karlsruhe.

Ratz, D. and Csendes, T. (1995), On the selection of subdivision directions in interval
branch-and-bound methods for global optimization, J. Global Optimization 7, 183—-207.

