
Journal of Global Optimization 16: 371–392, 2000. 371
 2000 Kluwer Academic Publishers. Printed in the Netherlands.

Multisection in Interval Branch-and-Bound
Methods for Global Optimization
I. Theoretical Results*

1 2´ANDRAS ERIK CSALLNER , TIBOR CSENDES and
3´ ´MIHALY CSABA MARKOT

1 ´Department of Computer Science, Juhasz Gyula Teachers Training College, Boldogasszony sgt. 4,
2 ´Szeged, Hungary (e-mail: csallner@ jgytf.u-szeged.hu); Department of Applied Informatics, Jozsef

3´ ´ ´Attila University, Arpad ter 2, Szeged, Hungary (e-mail: csendes@inf.u-szeged.hu); Institute of
´´ ´ ´Informatics, Jozsef Attila University, Arpad ter 2, Szeged, Hungary (e-mail: markot@inf.u-szeged.hu)

(Received 27 April 1999; accepted in revised form 17 November 1999)

Abstract. We have investigated variants of interval branch-and-bound algorithms for global
optimization where the bisection step was substituted by the subdivision of the current, actual
interval into many subintervals in a single iteration step. The convergence properties of the
multisplitting methods, an important class of multisection procedures are investigated in detail. We
also studied theoretically the convergence improvements caused by multisection on algorithms
which involve the accelerating tests (like e.g. the monotonicity test). The results are published in
two papers, the second one contains the numerical test result.

Key words: Branch-and-bound method; Global optimization; Interval arithmetic; Multisection;
Accelerating devices

1. Introduction

The aim of this paper is to analyze algorithms solving the unconstrained global
optimization problem. In general, we will assume that a nonempty bounded closed

nn-dimensional interval or box X , R containing all global minimizers x* of the (in
nmost cases continuous) objective function f : R → R can always be given. Consid-

ering real-life problems this means practically no restrictions on the type of
problems considered. Keeping this argumentation in view, the bound constrained
global optimization problem has the following form:

min f(x) . (1)
x[X

The algorithms considered are based on interval arithmetic [1, 10, 14, 17]. We shall

* The work has been supported by the Grants AMFK 398/95, FKFP 0739/97, OTKA F
025743, T 016413, T 017241, and MKM 75/96.

´372 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

ndenote the inclusion function of the objective function f by F : I → I, i.e., for
n

;Y [I and ;y [Y f(y) [F(y), where I stands for the set of all bounded closed
real intervals. In other words, f(Y) # F(Y) where f(Y) is the range of f over Y. The

nlower and upper bounds of an interval Y [I are denoted by lbY and ubY,
respectively, and the width by w(Y): w(Y) 2 max (ubY 2 lbY). I(X) stands for alli i i

nY [I such that Y # X. Two important properties of inclusion functions of
continuous functions are:

DEFINITION 1. F is said to be an isotone inclusion function over X if for ;Y,
Z [I(X) Y # Z implies F(Y) # F(Z).

DEFINITION 2. We call F a-convergent over X if for ;Y [I(X) w(F(Y)) 2
aw(f(Y)) < cw (Y), where c is a positive constant.

Much effort has been made to improve the convergence speed of interval methods
for global optimization in the last few decades to enable these reliable methods to
solve real-life problems [4–6, 7, 9, 13, 18–20]. The main part of this paper develops
further an idea [2, 3, 10, 14], subdividing the current subproblem into many (s . 2)
smaller problems in a single step in contrast to traditional bisection, where two new
subintervals are always produced.

1.1. INTERVAL BRANCH-AND-BOUND METHODS

Branch-and-bound algorithms are based on successive subdivision of the set of
feasible solutions. They use various branching rules mostly based on bounds on the
objective function values to select a promising subset that might contain a global
solution. Other bounds, e.g. those on the gradient of f(x), are used to exclude subsets
that surely does not contain any solutions. Thus, the basic branch-and-bound
principle usually requires both lower and upper bounds on the function values over a
set of the search domain which can be an interval, as well. Interval arithmetic
provides these bounds.

The general algorithm can be formulated as follows:

Model Algorithm

:Step 1. Let L be an empty list, set the current box A 5 X, and the iteration counter
:k 5 1.

Step 2. Subdivide A into a finite number of subsets A satisfying A 5 < A so thati i

int(A) > int(A) 5 5 for all i ± j where ‘int’ denotes the interior of a set.i j

Step 3. Add the subintervals hA j to K.i

Step 4. Discard certain elements from L that cannot contain a global minimizer.
:Step 5. Choose a new A [L and delete if from the list, L 5 L\hAj.

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION – I 373

:Step 6. While termination criteria do not hold set k 5 k 1 1 and go to Step 2.
Step 7. Stop.

The algorithm’s iterative part begins with Step 2, the subdivision of a given
current interval A. This step is essential when trying to accelerate the model
algorithm and is investigated in subsection 1.3 and section 2 in details.

The outlined algorithm manages a list L which contains intervals whose union
includes all global minimizers of the considered problem. One of the generally used
tools is to update an upper bound on the global minimum f *, and deleting the
intervals having a larger objective function lower bound than this stored value
(cut-off test).

It is convenient to manage another list, L to collect all intervals from the list Lout

where the bounds are tight or where the boxes are narrow enough. Thus, we can
terminate the algorithm, e.g., when our list L becomes empty.

1.2. ACCELERATING INTERVAL SUBDIVISION METHODS

Many tests exist to accelerate interval subdivision methods in general. Due to
possible overestimations, they do not influence the worst case behavior and hence
the theoretical convergence speed of a particular algorithm. These tests can lead to
better results on wide classes of optimization problems, but in general, neither can
these classes be determined explicitly, nor can the worst case speed be improved.
Some of these tests, usually called accelerating devices [17], are listed below not
intending to be exhaustive.

The most widely used accelerating device is the cut-off test: find as small
objective function value upper bounds as possible. Based on such a bound and the
lower bounds computed for the elements of L, many subintervals can usually be
discarded from the list. However, for an objective function that is ‘flat’ around the
global minimizer points, this device does not help much. A traditional local search
procedure can supply good upper bounds for the cut-off test.

The other widely used accelerating tool is the monotonicity test. Of course,
subsets where the objective function is strictly monotonous cannot contain stationary
points inside. This device is not efficient for an objective function that has several
saddle points and local minimizers. The same function can cause problems for the
concavity test that discards intervals over which the objective function is strictly
concave in a variable (since these intervals cannot contain a minimizer point inside).
The subdivision selection rules are described in [16].

Further ways to increase efficiency are the use of different inclusion functions,
e.g., the slope functions [11, 14, 15] or the centered forms with Baumann centers
[2]. This is a very interesting way of improving inclusions and further investigations
will most probably result in nicer worst case results for certain problem classes. This
paper, however, does not deal with these tools because we want to concentrate on
the effects of multisection.

´374 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

Some algorithmic modifications can change the behavior of a method. These are
the modifications to Step 2 and Step 5 of the model algorithm which correspond to
the branching in branch-and-bound algorithms. In Step 2 we can vary the direction
and the number of the cuts. We could certainly also change the proportions of the
arising subintervals but the information supplied by interval arithmetic is usually not
enough itself to make proper decisions. In Step 5 the way to choose a new current
box has to be determined.

1.3. THE INTERVAL SELECTION RULE

In each iteration cycle a new interval, the current box has to be picked up from the
list L for subdivision. Some information on the intervals can be stored in L or can be
expressed implicitly by the ordering of the list elements. These informations have to
be used to make the decision concerning which interval to choose.

The two most widely used variants are to set the current box be the list element
with the smallest inclusion function lower bound [17], and the other is to choose the
‘oldest’ interval from the list which corresponds to one of the widest ones [10].
These rules change also the theoretic convergence properties of the model algorithm
[17]. To be able to talk about these modifications we shall denote the algorithm
using the former rule the Moore-Skelboe algorithm and that applying the latter one
the Hansen algorithm. For both methods it is assumed that the current box is
bisected in Step 2 through one of the longest edges and never discard any element in
Step 4.

For the two considered algorithms the following assertion holds [17].

THEOREM 1. If w(Y) → 0 implies w(F(Y)) → 0 or w(Y) → 0 implies w(F(Y)) 2i i

w(f(Y)) → 0 then both the Moore-Skelboe and the Hansen algorithms converge to
the global minimum: min lbF(Y) → f(x*), where x* denotes one of the globalY[L<A

minimizers.

The main question is the convergence speed of these algorithms. Although the
Moore-Skelboe method has turned out to be faster in practice, it is slower than the
Hansen algorithm regarding the worst case behavior [7, 17]. The latter fact is
reflected in the following two theorems [17]:

THEOREM 2. The Moore-Skelboe algorithm converges arbitrary slowly if the
applied inclusion function is not inclusion isotone.

This restriction is not valid for the Hansen method as we have proved in [7].
Moreover, a theoretical worst case upper bound can be given for the difference
between the global minimum and the computed lower bound after k iteration cycles
[7].

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION – I 375

THEOREM 3. If F is the inclusion function of the objective function f applied in the
Hansen algorithm and F is of order a then

a 2a / nlbf(X) 2 lbF(A) < c(2w(X)) (k 1 1) , (2)

where c is the positive constant of the a-convergence and A the current box of the
kth cycle in the algorithm.

The same result was proved for the Moore-Skelboe algorithm when assuming
inclusion isotonicity for the inclusion function [7].

THEOREM 4. If F is an isotone inclusion function of the objective function f
applied to the Moore-Skelboe algorithm and F is of order a then (2) holds where c
is the positive constant of the a-convergence and A the current box of the kth
iteration cycle in the algorithms.

(2) states an exponential convergence speed with respect to the number of
variables and no results have been published up to now proving a better upper
bound on interval methods for global optimization. Although some noninterval
methods have better practical convergence speed properties, they do not exploit
global information and thus do not assure convergence for such a wide class of
problems. In contrast to that, interval arithmetic provides lower and upper bounds on
the function value over a whole set of points, represented by boxes, providing global
information.

2. Multisection and Multisplitting

As it can be seen in the joint paper [16] too, it can be important to utilize any
information on the objective function to decide which direction for the bisection
should be chosen. If we revert to our first assumption, namely, the objective function

ncan be any f : R → R real-valued function for which an evaluation routine is
available, then we have to find other ways to accelerate our algorithms. One way to
do so not discussed theoretically yet: changing the number of subintervals generated
by a subdivision or in other words using multisection in a single step.

The idea of multisection, i.e., multiple bisection, arose in [2, 10, 19] where more
than one bisection was made at a single iteration cycle. For serial algorithms the
triple bisection was experimentally found to be the most efficient, while for parallel

3methods it was the double bisection. Thus, the current box is multisected into 2 5 8
2or 2 5 4 subboxes (see Figure 1 for the 3-dimensional case) determining all of the

bisection directions prior to the first cut at that iteration cycle.
The results are convincing, however, additional calculations have to be made for

the choices of all bisection directions, and that consumes time. On the other hand, if
the directions are determined earlier, less information is available, and subboxes

´376 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

3Figure 1. Two types of multisection: a triple bisection into s 5 2 5 8 subintervals in a single
2iteration cycle, and as double bisection providing s 5 2 5 4 subintervals.

which could have been discarded from further investigations are processed. We can
save computations if we use only the most promising direction for subdivision. This
type of multisection, when s equal size subintervals are produced will be called
multisplitting in the sequel (Figure 2).

Both ideas above have something in common: They utilize the information on
many smaller subboxes, and they are not investigating the larger boxes in the search
tree. Let us consider this on an example on multisection.

Let us assume that we simply bisect the current box A into two subboxes A and1

A , then the resulting A into A and A and A into A and A , respectively. If2 1 11 12 2 21 22

we assume that the particular bisection directions are the same for bisection and
multisection, after a single 2-multisection step we get the four subboxes A , A ,11 12

A , and A . Obviously, the function evaluations over these subboxes provide more21 22

information than the function evaluations over their predecessors, hence, making the
function evaluations at A and A unnecessary, multisection can accelerate the1 2

Figure 2. Multisplitting is a special multisection where s equal size subintervals are produced
(here s 5 5, i.e. the 5-splitting is shown).

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION – I 377

method. On the other hand, however, we could have already discarded A and A ,1 2

saving the calculations for the smaller subboxes. If only one of them could have
been discarded, then we have the same number of subboxes to be investigated as in
the bisecting case. The decisive question is, whether there occur more advantageous
than disadvantageous cases. The principle is the same for a multisplitting algorithm,
apart from some unnecessary computations for the subdivision directions using
multisection.

The process of subdivisions can be considered as a tree, as well, denoting the root
with the initial box X, and the successors of a box with the subboxes it breaks up to.
For a bisection method this is a binary tree and omitting certain levels from that tree
we get the search tree of a multisection algorithm.

2.1. THE MULTISPLITTING ALGORITHM

To investigate the convergence speed of the multisplitting algorithm we restate some
results from [7] extending them for the multisplitting case.

In the following we will consider the multisplitting algorithm which differs from
the Hansen method only in splitting the current box A in Step 2 through the longest
edge into s equal size subintervals where s can be any natural number greater than
one. Without loss of generality we assume in the sequel that X is an s-quasi
hypercube, i.e., every edge is shorter than s times the length of any other edge (if
any). Expressed by formulas, if X 5 X 3 ? ? ? 3 X where the X (i 5 1, . . . , n)1 n i

interval denotes the ith projection of X, then w(X) , sw(X) (;i, j 5 1, . . . , n). Notei j

that this assumption does not influence our theoretical investigations, since after
some problem-specific constant number of iteration cycles X breaks down to s-quasi
hypercubes which can be treated separately. Its importance, however, is reflected in
the following notion of levels of iteration cycles for the multisplitting algorithm we
define below.

DEFINITION 3. We say that iteration cycle number k is on the lth level if for the
maximum width w of the boxes on the list L before the actual splitting themax

following holds:

2(l11) 2ls w(X) , w < s w(X) . (3)max

This notion simply follows the way how multisplitting realizes the subdivision. The
meaning of it is that if X is an s-quasi hypercube, then just after the 0th level of
iteration cycles the subintervals on list L are again congruent s-quasi hypercubes
with a width of w(X) /s. This property always recurs when entering a new level as a
consequence of the interval selection strategy of Hansen, i.e., the Hansen and
multisplitting algorithms. The levels of the algorithm are indeed ordered classes over
the iteration cycles, as the following remark formulates it.

´378 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

REMARK. If k and k 1 1 are iteration cycles and k is on the lth level then k 1 1 is
either on level l or on level l 1 1.

As Step 4 of the model algorithm is missing in the multisplitting algorithm and
since we assume the list L to have infinite capacity, all new subintervals are to be
found on our list. The next lemma shows how our list grows.

LEMMA 1. When beginning with the iteration cycles of level l of the multisplitting
algorithm with s-multisplitting, for the number of boxes N on the list L thel

following holds:

nlN 5 s 2 1 . (4)l

Proof. When entering a new level, all boxes waiting for splitting are congruent,
and thus, their widths are the same, w . The iteration cycles are finishing levelmax

l 2 1 if the last subbox having w width is split into s parts. Then the newmax

:maximum width is w 5 w /s. During this process each box is obviouslymax max old–
n nsubdivided into s subboxes, hence for all l [N, N 5 s (N 1 1) holds. Sincel l21

N 5 0, namely only the current interval A 5 X exists before the level 0 iterations,0

the assertion of the lemma follows. h

The next question arising is how many iteration cycles belong to a level. Some
basic steps of the multisplitting method are executed only once in each iteration and
thus it is important to be able to calculate the number of iteration cycles that have to
be done to enter a new level.

THEOREM 5. The number of iteration cycles belonging to the lth level is

nl ns (s 2 1)
]]]k 5 . (5)l s 2 1

Proof. Each box on the list L and the current box A has to be split into uniform
subboxes. Since also at the beginning of a level we have uniform boxes, let us first
consider only one of them. Because this is an s-quasi hypercube due to our
assumption, first it is sliced through one coordinate direction, then the obtained
subboxes through another direction perpendicular to the previous, and so on. At
each such stage (or relating to each direction) the number of subboxes to be sliced is
s-times greater than t was at the previous stage. The number of stages equals n, i.e.,
the dimension of the problem. Hence to split one box into uniform subboxes of the
next level we need

n ns 2 1i21]]O s 5 (6)s 2 1i51

iteration cycles.

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION – I 379

nlHaving now N 1 1 5 s uniform boxes at the beginning (see (4)), multiplying itl

by the result of (6), the formula for k follows. hl

Now we know how many iteration cycles belong to a particular level. To be able
to calculate the number of iteration cycles which has to be done to reach a certain
resolution, first we need to know which iteration cycles are involved in the lth level.
The next theorem gives an answer to this question.

THEOREM 6. Iteration cycle k is on the lth level if and only if

nl n(l11)s 2 1 s 2 1
]]]]]1 1 < k < . (7)s 2 1 s 2 1

Proof. Inequalities (7) come directly from (5) of Theorem 5. That theorem states
that at the lth level there are exactly k iteration cycles. Then summing thel

nl ns (s 2 1)
]]]k 5 terms we have for l > 1l s 2 1

l21 l21 ni n l21n nls (s 2 1) s 2 1 s 2 1ni]]]]]]]O k 5 O 5 O s 5 . (8)i s 2 1 s 2 1 s 2 1i50 i50 i50

Thus, up to the last iteration of level number l 2 1 the whole number of iteration
cycles executed is delivered by (8). The next step already belongs to level l resulting
in the first inequality of (7).

The lst step of level l can be calculated in a similar way summing to l instead of
l 2 1 in (8). That gives us he second inequality of the assertion. h

Now we have characterized the quite natural notion of iteration levels and are
nearly ready to give an upper bound on the convergence speed of the multisplitting
algorithm in the general case. For the proof of the theorem for the worst case we
first cite an important lemma [7]:

LEMMA 2. If F is an a-convergent inclusion function of f over X then for any
Y [I(X)

albf(X) 2 lbF(y) 5 f * 2 lbF(Y) < cw (Y) (9)

holds where c is the positive constant from the a-convergence definition.

Now we can state the worst case convergence speed for the multisplitting
algorithm.

THEOREM 7. If F is an a-convergent inclusion function of f over X then

a a 2a / nlbf(X) 2 min lbF(Y) < cw (X)s (k(s 2 1) 1 1) (10)
Y[L<A

holds for the worst case, where c is the smallest positive constant with which the

´380 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

a-convergence is valid, and L the list of the kth iteration of the multisplitting
algorithm.

Proof. From (9) of Lemma 2 it follows that
albf(X) 2 min lbF(Y) < cw (Y*) , (11)

Y[L<A

where Y* denotes the interval where the minimum min lbF(Y) is reached. IfY[L<A

iteration cycle k is on the lth level then from (3) of Definition 3
2l(;Y [L < A) w(Y) < s w(X) (12)

follows for any Y subinterval of the kth iteration cycle.
On the other hand, we can reform the second inequality of (7) of Theorem 6:

n(l11)s 2 1
]]]k < s 2 1

to
1 / n l(k(s 2 1) 1 1) s s ,

and then
2l 21 / ns < s(k(s 2 1) 1 1) . (13)

Applying now (13) to (12) and the result to (11), we have exactly what had to be
proved. h

This result means that multisplitting influences the theoretical convergence speed.
2a / nIn spite of the O(k) worst case for the Hansen algorithm (see Theorem 3) the

a (n21) / n 2a / npresence of the parameter s modifies the worst case to O(s k). The new
a (n21 / n)term s indicate that in spite of the promising example, multisection may

result in a worse efficiency. Though for the same k the upper bound becomes higher
and hence worse with increasing s, more information can be gained in a single
iteration cycle. Notice that (10) gives exactly (2) for the case s 5 2. It is worth to
remark, that for very high s we cannot complete the first iteration cycle due to
memory shortage, and thus after a large number of function evaluations nothing can
be said about the optimum. According to Theorem 7, multisplitting does not change
the worst case convergence speed for one-dimensional problems.

A more palpable characterization comes directly from the proof of Theorem 7. If
we substitute (12) into (11), we have a similar formula for the worst case as in (10)
but with parameter l:

a 2lalbf(X) 2 lbF(A) < cw (X)s . (14)

It is clear that the higher level the algorithms is, the better the optimum f * is
approached by the inclusion function. Inequality (14) describes the exponential
nature of this relation. However, the same level can mean different states referring

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION – I 381

to the subdivision, i.e., for a greater s the same l attains a finer actual resolution of
the domain X but needs more iteration cycles.

At the same time, a single level consists of several iterations. The best case occurs
if the considered iteration is the first of its level:

THEOREM 8. Let F be an a-convergent inclusion function of f over X and let k be
the first iteration of some l level. Then the following inequality holds for the best
case:

a 2a / nlbf(X) 2 min lbF(Y) < cw (X)((k 2 1)(s 2 1) 1 1) . (15)
Y[L<A

Proof. Since k means here the first iteration of level l, the first inequality of (7)
holds as an equality. Rearranging this equation we get

2l 21 / ns 5 ((k 2 1)(s 2 1) 1 1) . (16)

Substituting it into (12), we obtain w(Y) < w(X)((k 2 1)(s 2 1) 1 1). Now the latter
and (11) provide

a 2a / nlbf(X) 2 min lbF(Y) < cw (X)((k 2 1)(s 2 1) 1 1) ,
Y[L<A

the statement of Theorem 8. h

In contrast to the result of Theorem 8 on a general upper bound on lbf(X) 2

min lbF(Y), increasing s means a decrease, i.e. an improvement of this upperY[L<A

bound for the first iteration cycles of the levels.

THEOREM 9. If we increase the number of intervals split from s to ps (p . 1, ps is
an integer) of the multisplitting algorithm, then the necessary levels to achieve the
same resolution (the maximal width of the boxes in L) of X decreases by a factor of
b: bl(s) 5 l(ps), where

21log p
]]b > 1 1 . (17)S Dlog s

The number of iterations changes by a factor of g: gk(s) 5 k(ps) at the same time,
where

s 2 1
]]g > . (18)ps 2 1

Proof. The multisplitting algorithm does not contain any accelerating devices
(Step 4) and subdivides the widest box on list L, hence the length of L characterizes
the resolution of X. But this length can be determined using Lemma 1. Using

nl nb ls-splitting, the list length is s 2 1 when entering level l, while it is (ps) 2 1 for
ps-splitting. Due to our assumption

nl nb ls < (ps) , (19)

´382 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

implying

log s nlnl]]]]]nbl > log s 5 nl 5 ,ps log ps log p
]]1 1 log s

what is equivalent to the stated inequality (17). Note that the same result can also be
achieved using Definition 3 instead of list lengths.

Because of (8) of the proof of Theorem 6, the number of iterations to be done
until reaching the first iteration of level l is

nls 2 1
]]k 5 . (20)s 2 1

The corresponding formula for the ps-splitting is

nb l(ps) 2 1
]]]]gk 5 (21)ps 2 1

to reach level bl. Combining (19) and (21) we obtain

nls 2 1
]]gk > .ps 2 1

Dividing it with (20) we get the stated inequality (18) for g. h

Theorem 9 investigates the case when the multisplitting algorithm completes
whole levels. Although (17) is sharp also for the general case in the sense that

21log p
]]bl 5 1 1 , (22)S D log s

where ? denotes the ceiling function, the smallest integer not smaller than the
argument. The second statement, (18) of Theorem 9 can deliver in general a rough
underestimation and g can become even greater than 1. If, e.g., an s-splitting
terminates finishing a complete level, a ps-splitting can be forced to go through the
same number of levels resulting in much more iterations in total. However, some
test results have shown a significant decrease in the number of iterations when
increasing s from 2 to 3, 4, or 5 in most of the cases.

The aim is first of all to accelerate the Hansen method with the aid of the above
outlined modification resulting in the multisplitting algorithm, so let us consider the
typically most time consuming parts of it, i.e., those steps of the algorithm which
include function calls. Step 1 of the multisplitting algorithm is executed only once,
so it should not be considered. Note, however, that local search methods can be used
at this step to determine a good upper bound on the global solution of (1) for the
cut-off test. Step 2 involves a calculation for determining the splitting direction. This
can also mean some inclusion function calls for the objective function and its
derivatives (for details see subsection 1.4 and [9]). When implementing the

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION – I 383

multisplitting algorithm, Step 4 is usually executed together with Step 3 or Step 5.
In the former case certain elements are not even entered to list L, in the latter case a
current box is thrown away on the spot if it cannot contain any global minimizers
and a new one is chosen. Both of these versions need additional function calls,
however, we shall investigate the more widely used former one. Step 5 itself does
not need any function calls since the multisplitting algorithm like the Hansen
method manages an ordered list with the simple first-in-first-out principle. The
termination condition check in Step 6 may require extra function calls, as well.

Summarizing these results we get the following values for the number of
inclusion function calls required by the particular iteration cycles of the multisplit-
ting algorithm:

Step 1. –
Step 2. C1

Step 3. C s2

Step 4. (included in Step 3)
Step 5. –
Step 6. C3

Step 7. –

Note that the costs C do not depend on s. Hence, the total cost of function calls isi

C 5 C 1 C s 1 C . (23)1 2 3

Thus, a single iteration cycle costs O(s) function calls. Hence the dependence of
the number of function calls on the number of iteration cycles is linear and the
magnitude of the convergence speed is the same for the number of function calls as
for the number of iteration cycles stated in (10) of Theorem 7.

However, interval subdivision methods are in practice almost never used without
accelerating devices. Although they have been used widely for a long time, the
investigation of the theoretical effect of these modifications is a difficult problem.
The next section provides practical and theoretical results on their effects on the
convergence speed.

3. The Accelerating Devices

The generally used accelerating devices are very useful in most cases but it is
difficult to treat their effects theoretically when making a worst case analysis. In
fact, they do not improve the worst case convergence speed, yet it is worth to
involve them into our investigations since for a wide problem class they can
improve convergence speed by several magnitudes. Let us utilize their effects of
shortening the list L by discarding certain elements at each iteration cycle,
regardless of the methods they use to obtain this.

´384 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

Table 1. The h values, the relative number of subintervals remained after the use of an
acceleration test, in percentage for the monotonicity, concavity and cut-off tests on a wide set of
global optimization problems according to the levels of nodes in the search tree

Level Monotonicity t. Concavity t. Cut-off t.

min. aver. max. min. aver. max. min. aver. max.

0 50 91 100 100 100 100 100 100 100
1 3 52 100 97 100 100 3 53 100
2 6 44 83 56 90 100 3 44 81
3 12 31 83 83 95 100 3 34 81
4 12 32 48 88 96 100 3 26 56
5 12 29 46 – – – 2 24 45
6 8 27 44 – – – 3 18 38
7 7 25 46 – – – 3 17 34
8 11 24 43 – – – 3 16 34
9 12 28 38 – – – 3 17 26

10 11 22 39 – – – 3 17 31

Recalling the notion of levels, when entering a new level with the multisplitting
algorithm, all N 1 1 boxes waiting for subdivision are congruent. We now assumel

that at each iteration level at least a certain 1 2h (0 ,h < 1) proportion of boxes is
discarded from the list with the aid of a set of accelerating devices, hence the
number of elements to be processed can be less than N 1 1 at every level. Tol

demonstrate the viability of this assumption, Table 1 contains test results on typical
values of h in practice.

3.1. THE h-ACCELERATED ALGORITHM

To check how realistic this assumption is, we have completed a computational
study. The program visited each node of the search tree and checked how many
subintervals remained after the use of a given acceleration device (e.g. the cut-off
test). This experiment was repeated for each global optimization problem of the later
efficiency test (for details see subsection 2.1 in [16]). Table 1 contains the average,
the minimum and the maximum of the obtained empirical h values in percentages.

The studied acceleration devices show two phases regarding the achieved deletion
rates. In the first 1-2 levels they usually cannot delete a substantial amount of boxes.
According to the rounded figures in Table 1, the concavity test e.g. basically could
not delete subintervals during the first two search levels. In the subsequent second
phase, the average h values improve gradually, and they seem to stabilize around
specific values. This trend is also followed by the respective minimal and maximal h
values – although they represent sometimes only a single test problem with special
characteristic. This is also the reason why the concavity test could not delete any
subintervals in the worst case.

Both the monotonicity and the cut-off tests are quite effective. The figures in

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION – I 385

Table 1 are in a nice accordance with earlier reports [8, 12], although the
optimization algorithms did not check the search tree uniformly. These acceleration
devices ensure substantial deletion rates. The concavity test is less effective, so it
can be used better as a complementary measure, and in the case if the inclusion of
the Hessian is readily available. The missing deletion rates after level 4 for the
concavity test are due to memory shortage. Although no h , 1 value fits each level
and each test problem, the subsequent theoretical analysis describes well the general
behavior of such accelerated optimization algorithms.

3.2. THEORETICAL CONVERGENCE RESULTS

For the theoretical analysis only the second phase is of importance with stabilizing h
values, thus, Step 1 of the multisplitting algorithm also has to be changed. We
assume that the first phase is over, there remained N 1 1 . 0 congruent boxes0

which are non-overlapping subintervals of X and their union contains all global
minimizers. Box A is one of them which is picked up from L. The remaining steps
of the algorithm are left untouched. We shall call this algorithm the h-accelerated
algorithm.

nAfter accomplishing a level of iteration cycles a single box leaves at most hs
nsuccessors on the list instead of having all s subboxes stored (here ? stands for the

integer part of the argument or the floor function). In general, the next lemma can be
stated.

LEMMA 3. When entering level l, for the number of boxes N on the list L thel

following holds:

n lN < (hs) (N 1 1) 2 1 . (24)l 0

Proof. During the iteration cycles of a single level, each remained box when this
nlevel was entered is subdivided into s congruent subboxes. At every iteration cycle

of that level some subboxes are deleted so that only at most 100h percentage of
them remain by the end of that level. Thus, after completing all iteration cycles of

n nthe level, at most hs successors of each box are left, i.e., N < hs (N 1 1) 2 1l l21

holds for all l [N. Having N 1 1 boxes at the beginning, the formula can be0

expressed explicitly delivering (24). h

This result is very similar to Lemma 1. To be able to state the number of iteration
cycles belonging to a single particular level, further circumstances have to be
clarified. It is not the same whether the h-accelerating device deletes a few large

n lboxes at the beginning of a level leaving only at most hs (N 1 1) intervals at the0

end of that level or discards plenty of smaller boxes only already nearing the end of
that level. In the former case the number of iteration cycles of that level can be
small while in the latter case it can get rather large. The next lemma characterizes

´386 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

the number of iteration cycles belonging to a level in the best and worst cases,
applying an h-accelerating device.

LEMMA 4. 1. For the number of iteration cycles belonging to the lth level of the
h-accelerated algorithm the following holds in the best case:

ns 2 1 n l]]k < h (hs) (N 1 1) . (25)l 0s 2 1

2. In the worst case for the k number of iteration cycles belonging to the lth levell

of the h-accelerated algorithm the following holds:
ns 2 1 n l]]k < (h) (N 1 1) . (26)l 0s 2 1

Proof. 1. The best case occurs if n . 2, and (1 2h)(N 1 1) boxes have beenl

discarded during the first iterations of the lth level in full from the list L, without
any subdivisions saving

ns 2 1
]] (1 2h)(N 1 1)ls 2 1

iteration cycles for level l. In the second group of iteration cycles of level l at least
2lfurther s frac((1 2h)(N 1 1)) subboxes of width s w(X) are deleted savingl

n21s 2 1
]]] s frac((1 2h)(N 1 1))ls 2 1

2literation cycles, and then a few further subboxes that have widths of s w(X) and
2(l11)s w(X). Here frac(x) stands for x 2 x. The last mentioned boxes can be

neglected when an upper bound on k is calculated. The resulting list of an examplel

2-dimensional problem after this process is shown in Figure 3, and the deleted boxes
are denoted by shading.

Thus, the number of iteration cycles k needed is at mostl

Figure 3. An example outcome of h-acceleration: it is the best case, when the least iteration
cycles are made on level 0. The large squares are the 3 starting intervals (N 5 2), and the deleted0

subintervals are indicated by shading. The respective parameters were: s 5 3, n 5 2, and h 5 0.4.

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION – I 387

n n n21s 2 1 s 2 1 s 2 1
]]]]]]]2 (1 2h)(N 1 1) 2 s frac((1 2h)(N) 1 1) , (27)l ls 2 1 s 2 1 s 2 1

and the reformulation gives
n n21s 2 1 s 2 1
]]]]]k < h(N 1 1) 1 s frac((1 2h)(N 1 1))l l ls 2 1 s 2 1

ns 2 1
]]< h(N 1 1) . (28)ls 2 1

n lSubstituting N < (hs) (N 1 1) 2 1 from Lemma 3 into this result we obtain thel 0

inequality
ns 2 1 n l]]k < h (hs) (N 1 1) ,l 0s 2 1

which was to be proved. As we have mentioned, there can be more smaller terms
calculated determining a sharper bound for certain cases.

2. In the worst case the remaining boxes are deleted not at the beginning but at
the end of that level. Thus, boxes are only deleted when their width is already

2(l11)s w(X) (see Figure 4). Hence, no iteration cycles can be saved for that level,
because splitting these subboxes is the duty of the next level.

n lEntering level l there are at most (hs) (N 1 1) boxes waiting for subdivision0
naccording to (24), each of which needs (s 2 1) /(s 2 1) iteration cycles as stated in

(6) of Theorem 5 to be split into uniform subboxes. The result obtained for the
multisplitting algorithm is obviously applicable for the present worst case study.
Multiplying these two terms provides the assertion. Also this bound is sharp. h

REMARK. For k , the number of iteration cycles belonging to the lth level of thel

h-accelerated algorithm in the best case the inequality

n n21s 2 1 s 2 1
]]]]]k < h(N 1 1) 2 s frac((1 2h)(N 1 1)) (29)l l ls 2 1 s 2 1

Figure 4. An example outcome of h-acceleration: it is the worst case, when the most iteration
cycles are made on level 0. The large squares are the 3 starting intervals (N 5 2), and the deleted0

subintervals are indicated by shading. The respective parameters were: s 5 3, n 5 2, and h 5 0.4.

´388 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

holds if n < 2, and for n < 2 no better upper bound can be given utilizing only the
h-assumption.

This follows immediately from (27) of the proof of the statement (25) of Lemma
4. For instance, let us consider the example given in Figure 3. The total number of
iteration steps of level 0 is 12 in the unaccelerated case, but only 6 with an
0.4-acceleration device. The bound calculated with the aid of (25) is 8, which is
correct, but not tight. On the other hand, (29) of Remark provides the correct value

41.2 2 3 frac(1.8) 5 6 .

Of course, the formula can be extended with several terms obtaining sharp bounds
for different dimensions n, but for our further investigations this direction is out of
interest.

The important point, as it was in the general case, is to characterize the steps
belonging to a certain level. The following theorem gives a necessary condition for
an iteration cycle to be on the lth level in the worst case.

THEOREM 10. If the kth iteration cycle is on the lth level then
n1. in the hs . 1 case

n n l11s 2 1 hs 2 1
]]]]]]k < (N 1 1) (30)n 0s 2 1 hs 2 1

holds while
n2. when hs 5 1 then

ns 2 1
]]k < (l 1 1)(N 1 1) . (31)0s 2 1

Proof. Lemma 4 provides an upper bound on the number k of iteration cycles ofl
nthe lth level. If hs . 1 then summing the k terms we geti

l l ns 2 1 n i]]O k < O (hs) (N 1 1) (32)i 0s 2 1i50 i50

ln n n l11s 2 1 s 2 1 hs 2 1n i]]]]]]]]< (N 1 1) O hs 5 (N 1 1) , (33)n0 0s 2 1 s 2 1 hs 2 1i50

and that proves assertion 1.
n l n iIf hs 5 1 then o hs 5 l 1 1, and inequalities (32) and (33) provide thei50

better upper bound

l ns 2 1
]]O k < (l 1 1)(N 1 1) , (34)i 0s 2 1i50

proving assertion 2. h

We cannot give a lower bound for the iteration cycles of level l since our

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION – I 389

assumption on the subboxes remaining after each step is only an over-estimate. On
the other hand, sharpening our assumption would turn the theoretical results into
unrealistic. However, (30) and (31) of Theorem 10 allow us to prove the next result
on the worst case convergence speed of the h-accelerated algorithm.

THEOREM 11. Let F be an a-convergent inclusion function of f over X and let us
apply the h-accelerated algorithm to solve (1). Moreover, let the iteration cycle k be
on level l at the moment of investigation.

n1. If hs . 1 is true then

a l / n a (n21) / n 2a / nlbf(X) 5 min lbF(Y) 5 O(h s k) (35)
Y[L<A

holds.
n2. In the hs 5 1 case the convergence can be characterized by:

a l / nl2a l / n 2a l / n a l / n]SS D Dlbf(X) 2 min lbF(Y) 5 O(s k l) 5 O . (36)skY[L<A

Proof. 1. Let us assume that
nhs > 2 . (37)
n nSince hs is positive and the hs 5 1 case is investigated separately, condition

(37) is always fulfilled. Thus, inequality (30) of Theorem 10 is valid and it can
easily be rearranged based on the natural assumptions of s . 1 and N 1 1 . 0 to0

n nk(s 2 1)(hs 2 1) k(s 2 1)(hs 2 1) n l11]]]]]]]]]]]1 1 < 1 1 < hs . (38)n n(N 1 1)(s 2 1) (N 1 1)(s 2 1)0 0

n l11 n nSubsequently, we give an upper bound on hs . Obviously, hs ,hs 1 1, and
n n nhs . 1 holds because of condition (37). Hence, hs 1 1 , 2hs . This provides the

following estimation:
n l11 n l11 l11 l nhs , (2hs) 5 (2h) (s s) . (39)

2lInequalities (38) and (39) together give an upper bound for s :

n 1k(s 2 1)(hs 2 1)]2
n]]]]]1 1n(N 1 1)(s 2 1)02l]]]]]]]s , s . (40)1 2l11(2h)

The h-accelerated algorithm is a Hansen method concerning the way it selects the
current box, hence, from Definition 3

2lw(A) 5 w < s w(X) (41)max

holds for all current boxes A of the lth level. Because all boxes Y stored in the list L
have less or equal widths as the current box, for the interval Y* where the minimum
min lbF(Y) is obtained the inequalityY[L<A

´390 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

2lw(Y*) < s w(X) (42)

also holds.
Applying (42) to Lemma 2 we have

a 2l albf(X) 2 min lbF(Y) < cw (Y*) < c(s w(X)) . (43)
Y[L<A

Let us continue the inequalities (43) substituting (40) into it:

n a1k(s 2 1)(hs 2 1)]2
n]]]]]1 1n(N 1 1)(s 2 1)02l a]]]]]]]c(s w(X)) , c sw(X) . (44)1 1 2 2k11(2h)

Checking the terms’ magnitudes assertion 1 follows.
n2. In the hs 5 1 case the inequality (31) of Theorem 10 holds. Rearranging

(31) we obtain:
lk(s 2 1)]22l n]]]]]s < 1 1 . (45)S D(l 1 1)(N 1 1)0

Based on the argumentation of the proof of assertion 1 above, (45) can be
substituted into (43) delivering

a lk(s 2 1)]2 an]]]]]lbf(X) 2 min lbF(Y) < c 1 1 w(X) , (46)S D
Y[L<A (l 1 1)(N 1 1)0

and that implies (36). h

Note that in (10) of Theorem 7, which corresponds to the unaccelerated
multisplitting algorithm the magnitudes of the terms s and k are the same as in the
accelerated case as stated in (35) of Theorem 11. The only difference in non-
constant terms is the presence of h. This coefficient expresses the weakness of the
h-accelerating device. Thus, the greater this h is the worse approximation for the

noptimum can be achieved using a fixed amount of computation. The hs 5 1 case
is very special and quite rare. The bound given in (36) of Theorem 11 is always
tighter than the bound of (35). The latter statement also means that the bound of
(35) can always be used, and the special case has only been investigated to be
exhaustive. Summarizing the consequences of Theorem 11, the convergence speed

a l / ndepends on h as h . In other words, for fixed a-convergence rate and dimension
n, better acceleration devices result in polynomially better convergence speed: the
larger level we are, the quicker the convergence speed. This time no best case
convergence speed can be given due to the definition of h (see also the comment
after the proof of Theorem 10).

All theoretical convergence results given here for multisplitting or h-accelerated
algorithms make only sense if the notion of iteration levels is valid for the method in
question. Any attempt to translate the train of thought directly to the widely used
Moore-Skelboe methods would fundamentally fail. The reason for this is again to be

MULTISECTION IN INTERVAL METHODS FOR GLOBAL OPTIMIZATION – I 391

found in how the Hansen and the Moore-Skelboe methods search the tree of
subdivisions to tighten the inclusion of the global optimum value. While the Hansen
methods perform an accurate breadth-first search, a Moore-Skelboe method can go
deep down the tree and then reach out for a box being much higher, depending on
the particular problem to be solved. This is the reason why the otherwise easily
available inclusion isotonicity property of the inclusion function is required for
Moore-Skelboe methods to be acceptably effective. The theoretical investigation of
Moore-Skelboe methods needs therefore a completely different point of view, and
such a study exceeds the range of this paper.

4. Summary and Conclusions

Compared to stochastic methods, interval methods for global optimization are able
to provide solutions of guaranteed reliability – at the costs of sometimes substantial-
ly higher computational and space complexity. The present study aimed at
investigating the possibilities of improving the efficiency while keeping the
reliability. A new subdivision technique is applied where the traditional bisection
step is substituted by the subdivision of the current interval into many subintervals
in a single iteration step. For the multisplitting algorithm the number of iteration
cycles belonging to a level of subintervals and the serial numbers of such iteration
cycles were determined. On this basis, the speed of the convergence to the global
minimum value was given for the best and the worst cases. According to these
convergence speed bounds, the worst case speed is the best for bisection, while the
best case speed improves as s, the number of subintervals generated in a single
iteration step increases. The effects of the accelerating devices on the convergence
speed are specified, and it turned out that better acceleration devices result in
polynomially better convergence speed, and on the larger level we are, the quicker
the convergence speed.

Acknowledgement

The authors are grateful for the useful suggestions of the two anonymous referees.

References

1. Alefeld, G. and Herzberger, J. (1983), Introduction to Interval Computations. Academic
Press, New York.

2. Berner, S. (1995), Ein paralleles Verfahren zur verifizierten globalen Optimierung. Disserta-
¨tion, Universitat Wuppertal.

3. Berner, S. (1966), New results on verified global optimization, Computing 57: 323–343.
´4. Casado, L.G., Garcıa, I. and Csendes, T., Adaptive Multisection in Interval Methods for

Global Optimization, submitted for publication
(available at http: / /www.inf.u-szeged.hu /|csendes /publ.html).

´392 A.E. CSALLNER, T. CSENDES AND M.C. MARKOT

´5. Casado, L.G., Garcıa, I. and Csendes, T., A Heuristic Rejection Criterion in Interval Global
Optimization Algorithms, submitted for publication
(available at http: / /www.inf.u-szeged.hu /|csendes /publ.html).

6. Csallner, A.E. (1993), Global optimization in separation network synthesis, Hungarian J.
Industrial Chemistry 21: 303–308.

7. Csallner, A.E. and Csendes, T. (1996), On the convergence speed of interval methods for
global optimization, Computers, Mathematics and Applications 31: 173–178.

´8. Csendes, T. and Pinter, J. (1993), The impact of accelerating tools on the interval
subdivision algorithm for global otimization, European J. of Operational Research 65:
314–320.

9. Csendes, T. and Ratz, D. (1997), Subdivision direction selection in interval methods for
global optimization, SIAM J. Numerical Analysis 34: 922–938.

10. Hansen, E. (1992), Global optimization using interval analysis. Marcel Dekker, New York.
11. Hansen, P., Jaumard, B. and Xiong, J. (1994), Cord-Slope Form of Taylor’s Expansion in

Univariate Global Optimization, J. Optimization Theory and Applications 80: 441–464.
12. Ichida, K. and Fujii, Y. (1979), An interval arithmetic method for global otimization.

Computing 23: 85–97.
13. Kearfott, R.B. (1996), Test results for an interval branch and bound algorithm for equality-

constrained optimization. In: Floudas, C.A. and Pardalos, P.M. (eds.), State of the Art in
Global Optimization. Kluwer, Dordrecht, 181–199.

14. Kearfott, R.B. (1996), Rigorous global search: continuous problems. Kluwer, Dordrecht.
15. Krawczyk, R. and Neumaier, A. (1985), Interval Slopes for Rational Functions and

Associated Centered Forms, SIAM J. Numerical Analysis 22: 604–616.
´16. Markot, M.Cs., Csendes, T. and Csallner, A.E., Multisection in Interval Branch-and-Bound

Methods for Global Optimization II. Numerical Tests. Submitted for publication
(available at http: / /www.inf.u-szeged.hu /|csendes /publ.html).

17. Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization. Ellis
Horwood, Chichester.

18. Ratschek, H. and Rokne, J. (1993), Interval Methods, In: Horst R. and Pardalos P.M. (eds.),
Handbook of Global Optimiation, Kluwer, Dordrecht, 751–828.

19. Ratz, D. (1992), Automatische Ergebnisverifikation bei globalen Optimierungsproblemen.
¨Dissertation, Univesitat Karlsruhe.

20. Ratz, D. and Csendes, T. (1995), On the selection of subdivision directions in interval
branch-and-bound methods for global optimization, J. Global Optimization 7, 183–207.

